
инструкция по эксплуатации ПРИВОД 415

АВТОМАТИЧЕСКАЯ СИСТЕМА FAAC 415 1. ОПИСАНИЕ

Автоматическая система **FAAC 415** предназначена для управления распашными воротами, как наружного, так и внутреннего исполнения с длинной створки до 4м и включает в себя два электромеханических нереверсивных привода, принцип работы которых основан на перемещении штока с помощью червячной передачи.

Привода **FAAC 415** имеют несколько вариантов исполнения, в частности на приводе **415**LS установлены концевые выключатели для открывания и закрывания.

Нереверсивная система обеспечивает механическое блокирование створок при выключенном двигателе. Удобная и надежная система разблокировки с помощью индивидуального ключа обеспечивает возможность перемещения створок вручную в случае неполадок или пропадания напряжения.

- Эффективная работа автоматической системы FAAC 415 обеспечивается только в случае использования оборудования и устройств безопасности, произведенных фирмой FAAC.
- Для обеспечения необходимой защиты от защемления привода FAAC 415 должны устанавливаться с блоком управления, снабженным электронной регулировкой усилия.

Автоматическая система FAAC 415 разработана и изготовлена для контроля доступа транспортных средств, любое другое использование не по назначению запрещено!

№ П/П	Описание					
1	Привод					
2	Устройство разблокировки					
3	Шток					
4	Передний кронштейн					
5	Задний кронштейн					
6	Заднее крепление					
7	Штифт заднего крепления					
8	Крышка клеммной колодки					

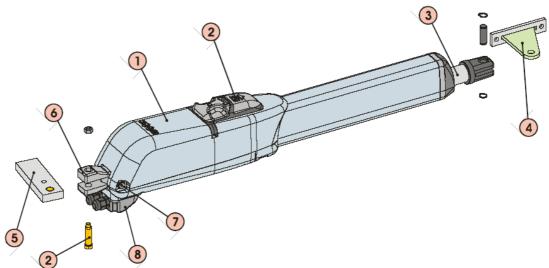


Рис. 1

1.1. Размеры

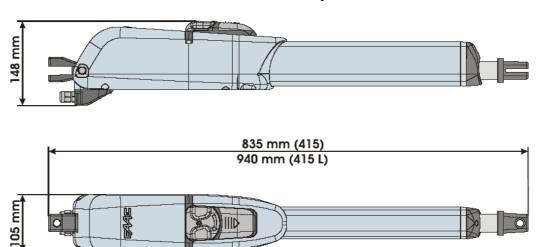


Рис. 2

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	415	415 LS	415 L	415 L LS	415 24 V	415 LS 24 V	415 L 24V	415 L LS 24V	415 115V	415 LS 115V	415 L 115V	415 L LS 115V
Напряжение питания	230 B~			24 В пост.тока			115 B~					
Потребляемая мощность (Вт)	300			70			300					
Потребляемый ток А	1,3		3			2,5						
Тепловая защита обмотки двигателя ° С	140		-			140						
Конденсатор мкФ	8 -		25									
Тяговое усилие даН	300 280		300									
Ход штока (мм)	30	00	4(00	3	00	4(00	30	00	4	00
Скорость движения штока см/с	1,6											
Макс.длина створки (м)	3	(1)	4	(2)	3 ⁽¹⁾ 4 ⁽²⁾		3 ⁽¹⁾		4 ⁽²⁾			
Тип и интенсивность использования при 20°C	S3 30%	S3 35%	S3 30%	S3 35%		10	00%		S3 30%	S3 35%	S3 30%	S3 35%
Минимум циклов/час при 20°C	~	30	~	25		~	75		~	30	~	25
Диапазон рабочих температур	-20 °C +55 °C											
Вес привода (кг)	7,8 8 7,8			7,8 8 7,8 8				8				
Длина привода	См. рис. 2											
Размеры привода	См. рис. 2											
Класс защиты	IP54											

⁽¹⁾ Со створками длиной более 2,5м для их блокировки требуется установка электрического замка. (2) Со створками длиной более 3м для их блокировки требуется установка электрического замка.

2.1. Исполнения

МОДЕЛЬ	ИСПОЛНЕНИЕ			
Привод 415	230 В~ нереверсивный привод			
Привод 415 LS	230 В~ нереверсивный привод с концевыми			
	выключателями в открытом и закрытом			
	положении			
Привод 415 L	230 В~ нереверсивный привод (удлиненный)			
Привод 415 L LS	230 В~ нереверсивный привод с концевыми			
	выключателями в открытом и закрытом			
	положении (удлиненный)			
Привод 415 24V	24 В= нереверсивный привод			
Привод 415 LS 24V	24 В= нереверсивный привод с концевыми			
	выключателями в открытом и закрытом			
	положении			
Привод 415 L 24V	24 В= нереверсивный привод (удлиненный)			
Привод 415 L LS 24V	24 В= нереверсивный привод с концевыми			
	выключателями в открытом и закрытом			
	положении (удлиненный)			
Привод 415 115V	115 B~ нереверсивный привод			
Привод 415 LS 115V	115 В~ нереверсивный привод с концевыми			
	выключателями в открытом и закрытом			
	положении			
Привод 415 L 115V	115 В~ нереверсивный привод (удлиненный)			
Привод 415 L LS 115V	115 В~ нереверсивный привод с концевыми			
	выключателями в открытом и закрытом			
	положении (удлиненный)			

Для приводов 415 питающихся напряжением 115В использовать контроллер 455 MPS UL 115.

3. МОНТАЖ

3.1. Электромонтаж (стандартная установка)

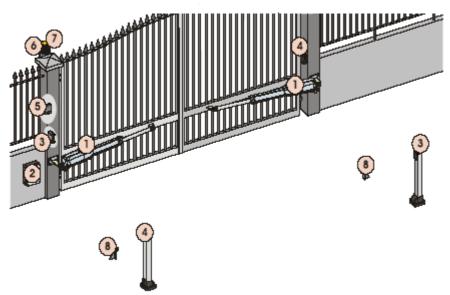


Рис. 3

№ П/П	Описание	Кабель				
1	Приводы	$4x1,5 \text{ mm}^2(2x1,5 \text{ mm}^2)$				
2	Электронный блок управления	3x1,5 мм ² (питание)				
3	Фотоэлементы TX	4x0,5 mm ²				
4	Фотоэлементы RX	2x0,5 mm ²				
5	Кнопка подачи команд	$2x0,5 \text{ mm}^2(3x0,5 \text{ mm}^2)$				
6	Сигнальная лампа	2x1,5 mm ²				
7	Приемник	3х0,5 мм ²				
8	Механический упоры	-				

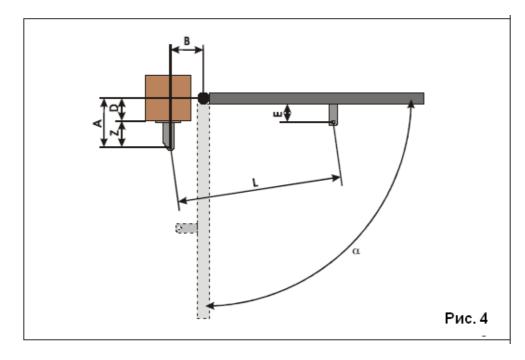
Примечания:

- Для прокладки силовых кабелей использовать соответствующие трубы или шланги.
- Во избежание помех прокладывайте низковольтные кабели для аксессуаров и контроллера отдельно от высоковольтных кабелей питания 230В, используя специальное экранирование.

3.2. Предварительная подготовка

Для обеспечения безупречной работы автоматической системы конструкция существующих или изготавливаемых ворот должна соответствовать следующим требованиям:

- Максимальная длина створок не должна превышать размеров, указанных в технических характеристиках приводов.
- Конструкция ворот должна быть достаточно жесткая и прочная.
- Проверьте перемещение створок на протяжении всего пути движения ворот- движение створки должно происходить плавно, без трения.
- Проверьте состояние установленных шарниров и петель.
- Проверьте наличие механических концевых упоров, при необходимости произведите их установку.
- Наличие заземления привода.


Все сварочные и слесарные работы на воротах необходимо выполнить до установки автоматики.

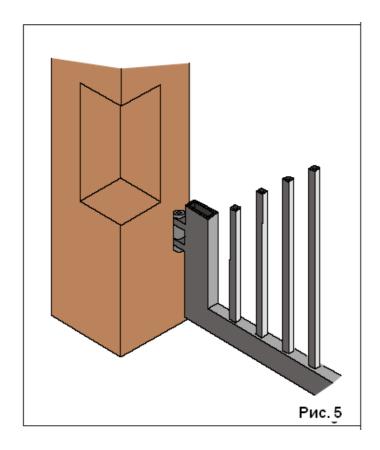
Конструкция ворот непосредственно влияет на общую надежность и безопасность автоматики.

3.3. Монтажные размеры

Определить место крепления привода с учетом размеров на рис. 4.

Тщательно проверить, чтобы расстояние между открываемой створкой и возможным препятствием (стеной, забором и т.п.) было больше размеров привода, в противном случае привод будет упираться в препятствие. Это приведет к тому, что створка ворот будет открываться не до конца.

Модель	α	A	В	$\mathbf{C}^{(1)}$	$\mathbf{D}^{(2)}$	$\mathbf{Z}^{(3)}$	L	$\mathbf{E}^{(3)}$
415 / 415 LS /	90°	145	145	290	85	60	1110	45
415 24V / 415 LS	110°	120	135	295	60	60	1110	
24V / 415 115V /								
415 LS 115V								
415 L / 415 L LS	90°	195	195	390	125	70	1290	45
/ 415 L 24V / 415	110°	170	170	390	110	60	1290	
L LS 24V / 415 L								
115V / 415 L LS								
115V								

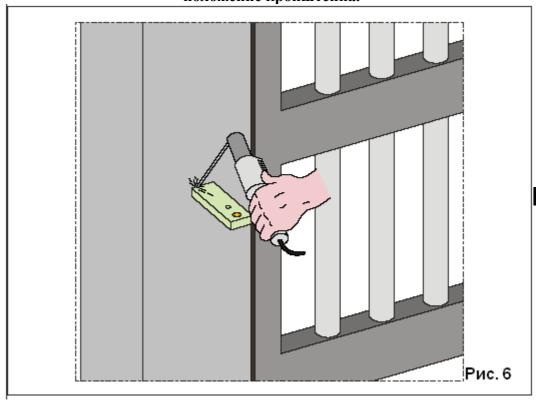

⁽¹⁾ рабочий ход штока привода

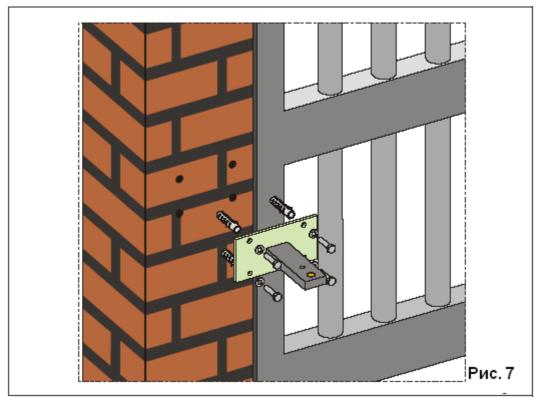
3.3.1. Общие правила для определения монтажных размеров

- Для угла открывания створки 90°: **A+B=C**
- Для угла открывания створки больше 90°: **A+B<C**
- Уменьшение размеров A и B уменьшает угол открытия (закрытия) створок ворот. Мы рекомендуем применять стандартные размеры. Разницу между размерами A и B должна быть не более 4 см.
- Размер Z берется из условия, чтобы привод не ударился о столб во время движения. Если размеры столба или расположение петли не позволяют установить привод (размер A превышает табличное значение), то в столбе нужно выполнить нишу в соответствии с рис. 5. Ниша должна быть спроектирована таким образом, чтобы не было затруднений при монтаже, и имелся свободный доступ к кронштейну и устройству разблокировки.
- При применении привода LS (с концевыми выключателями), концевые выключатели срабатывают на первых и последних 30 мм хода штока привода. Поэтому размеры A и B следует выбирать так, чтобы использовался весь рабочий ход штока привода. Малый ход может ограничить или сделать невозможной регулировку выключателей.

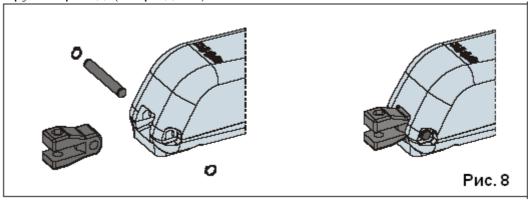
⁽²⁾ максимальный размер

⁽³⁾ минимальный размер

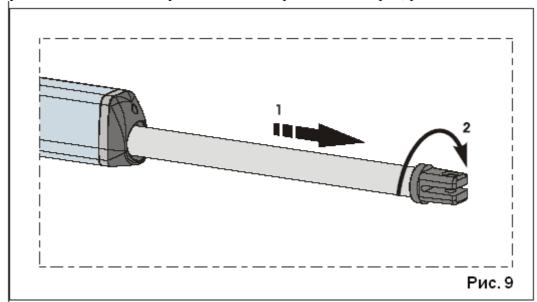

3.4. Монтаж приводов

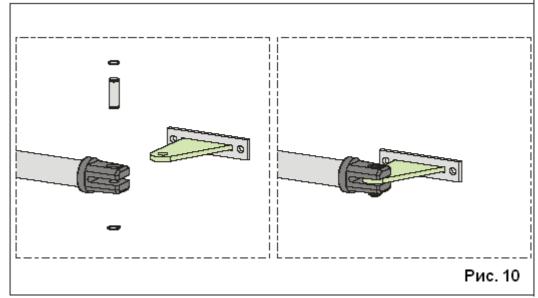

1) Задний кронштейн, входящий в комплект, закрепить на столбе в соответствии с размерами указанными в таблице.

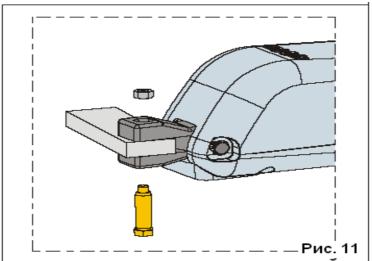
Если привод устанавливается на металлический столб, то кронштейн можно приварить непосредственно к столбу (рис. 6).


Если привод устанавливается на каменный или кирпичный столб, то можно использовать пластину с отверстиями под анкера, предварительно приварив к ней кронштейн (рис. 7).

При монтаже с помощью строительного уровня необходимо обеспечить горизонтальное положение кронштейна.




- 2) Установите заднее крепление в привод, как показано на рис. 8.
- 3) Разблокируйте привод (см. раздел 6).


- 4) Полностью выдвинуть шток до упора, как показано на рис. 9 поз. 1.
- 5) Заблокировать привод (см. раздел 6.1).
- 6) Повернуть шток по часовой стрелке на пол оборота/один оборот, рис. 9 поз. 2.

7) Закрепите передний кронштейн на штоке как показано на рис. 10.

8) Закрепите привод на заднем кронштейне посредством болта, поставляемого в комплекте, как показано на рис. 11.

Внимание: прежде чем прикреплять привод к привареному кронштейну, подождите пока кронштейн остынет.

- 9) Закрыть створку и, удерживая привод строго горизонтально, определить место крепления переднего кронштейна (рис. 12). Горизонтальное положение привода определяется с помощью строительного уровня.
- 10) Временно закрепить передний кронштейн сваркой в двух точках (рис. 12).

Примечание: Если конструкция створки ворот не обеспечивает надежного крепления, то створку нужно соответствующим образом усилить.

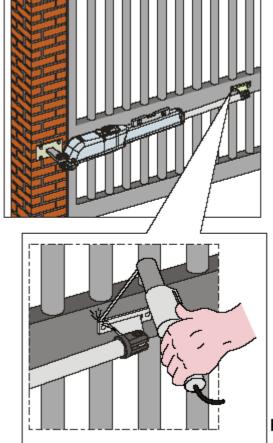


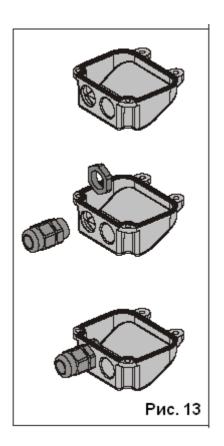
Рис. 12

- 11) Привод разблокировать (см. раздел 6) и проверить перемещение вручную, открываются ли ворота полностью, т.е. до механических упоров, кроме того, проверить легкость и равномерность перемещения.
- 12) Произведите необходимые корректировки и повторите операции начиная с п.9.
- 13) Временно снять привод с переднего кронштейна кронштейн окончательно приварить к створке ворот.

Если конструкция створки не позволяет приварить кронштейн, его можно прикрепить к створке посредством болтового соединения.

Примечание: рекомендуется все крепежные болты кронштейнов смазать консистентной смазкой.

3.5. Подключение кабелей к приводу


В нижней части привода находится клеммная колодка для подключения кабеля питания двигателя, концевого выключателя и заземления привода.

ВАЖНО: Для подключения питания к двигателю необходимо использовать гибкий кабель для наружной установки.

Для подключения кабеля питания двигателя необходимо:

- 1) Выдавить одно из двух намеченных отверстий в крышке, рис.13; для привода с концевыми выключателями нужно выдавить оба отверстия.
- 2) Установить поставляемый в комплекте кабельный ввод.
- 3) Подсоединить кабели двигателя и заземления согласно рис. 14 и таблицы.

Для приводов CSA-UL, питающихся напряжением 115B, конденсатор необходимо установить в корпус.

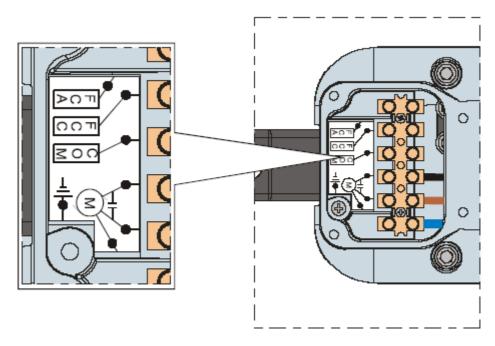
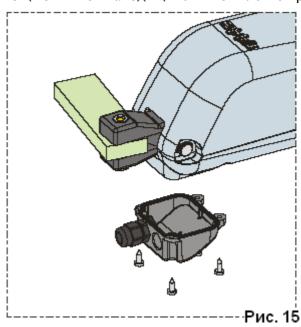



Рис. 14

415 230 B~ (115 B~)										
№ П/П	ЦВЕТ	ОПИСАНИЕ								
1	Синий (Белый)	Общий контакт								
2	Коричневый (Красный)	Фаза 1								
3	Черный (Черный)	Фаза 2								
T	Желтый / Зеленый (Зеленый)	Заземление								
	415 24 В пост. тока									
№ П/П	ЦВЕТ	ОПИСАНИЕ								
1	Синий	Фаза 1								
2	Не используется	/								
3	Коричневый	Фаза 2								
T	Не используется	/								

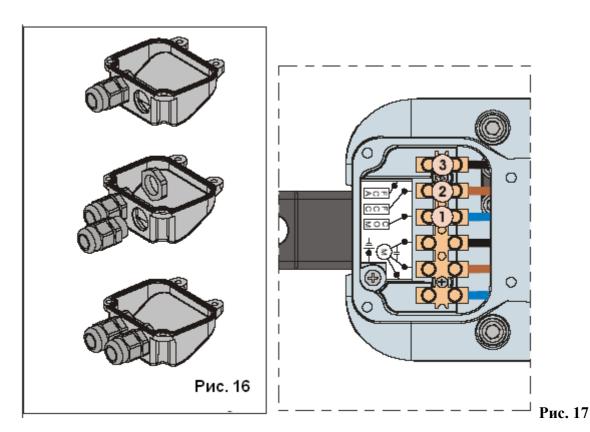
4) Закрепить крышку с помощью винтов находящихся в комплекте привода, рис. 15.

3.6. Концевые выключатели

Модели «LS» оборудованы концевыми выключателями открытого и закрытого положения. Они подключаются к контроллеру.

Примечание: Концевые выключатели срабатывают за 30мм в начале и в конце рабочего хода штока. При открывании необходимо чтобы использовался весь рабочий ход штока привода. Уменьшение рабочего хода штока может ограничить или полностью исключить диапазон регулирования концевого выключателя.

3.6.1. Подключение концевого выключателя


Кабель управления концевыми выключателями подсоединяется к той же клеммной колодке, что и двигатель. Подсоединение производится следующим образом:

- 1) Выдавить второе намеченное отверстие в крышке, рис. 16.
- 2) Установить поставляемый в комплекте кабельный ввод.
- 3) Ввести кабель и подсоединить его к клеммам, соблюдая цвета, указанные в таблице на рис. 17.
- 4) Закрепить крышку при помощи четырех поставляемых в комплекте винтов.

Примечание:

- для подсоединения концевых выключателей использовать кабель для наружной установки (сечение проводов 0.5 мм²⁾.
- при подключении следует соблюдать цвет проводов в соответствии с таблицей на рис.17.

 № П/П
 ЦВЕТ
 ОПИСАНИЕ

 1
 Синий
 Общий контакт

 2
 Коричневый
 Концевой выключатель закрывания (FCC)

 3
 Черный
 Концевой выключатель открывания (FCA)

3.6.2. Регулировка концевых выключателей

Регулировка концевых выключателей осуществляется следующим образом:

- 1) Выкрутить верхний винт крепления, рис. 18 поз. А, и снять крышку, рис. 18 поз. В.
- 2) Для регулировки концевого выключателя FCC (положение створки закрыто), нужно повернуть регулировочный винт по часовой стрелке, рис. 19 поз. А, это увеличит ход штока, и против часовой стрелки уменьшит.
- 3) Для регулировки концевого выключателя FCA(положение створки открыто), нужно повернуть регулировочный винт против часовой стрелки, рис. 20 поз. А, это увеличит ход штока, и по часовой стрелке уменьшит.
- 4) После этого, для уточнения расположения концевых выключателей, необходимо выполнить несколько пробных циклов открытия закрытия створок ворот. При необходимости произвести еще раз регулировку концевых выключателей, начиная с пункта 2.

1. Установить крышку на место, рис. 18 поз. В, и снова затянуть крепежный винт, рис. 18

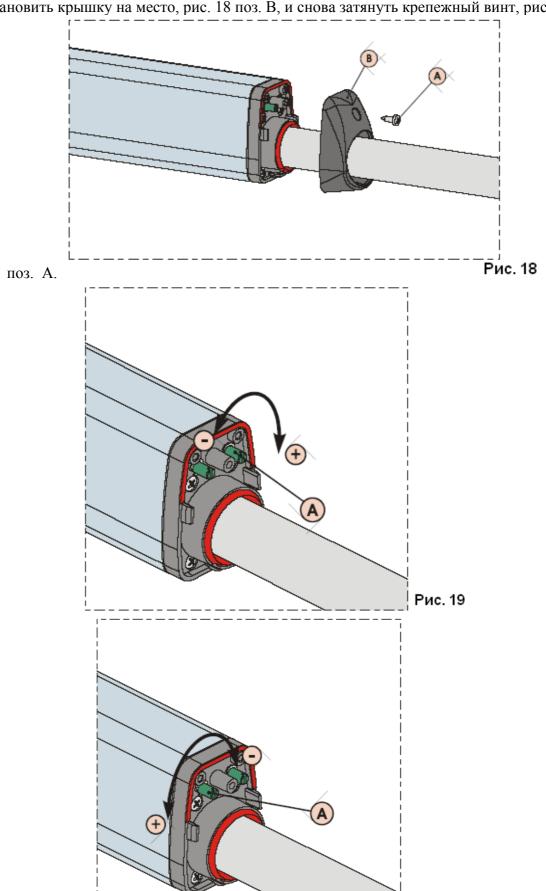


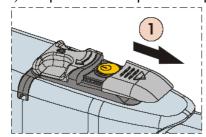
Рис. 20

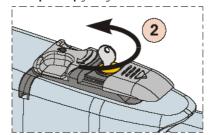
ВНИМАНИЕ: Перед началом выполнения работ необходимо отключить напряжение сети на блоке управления и приводах.

Все прокладки кабелей, электрические подключения приводов, электронного блока управления и дополнительных устройств выполнить в соответствии с рис. 3. (п.п3.1).

Во избежание помех прокладывайте низковольтные кабели для аксессуаров и контроллера отдельно от высоковольтных кабелей питания 230В, используя специальное экранирование.

- 1) Подключите питание 230В к системе и проверьте состояние светодиода по таблице (см. Инструкцию к блоку управления).
- 2) Запрограммируйте блок управления в соответствии с требованиями потребителя (заказчика) и согласно с инструкциями.


4. ПРОВЕРКА СИСТЕМЫ АВТОМАТИКИ


- Произвести тщательный контроль блока управления, приводов и всех дополнительных устройств, обратить особое внимание на работоспособность устройств безопасности.
- Не забудьте:
 - 1. Вручить заказчику инструкцию по эксплуатации.
 - 2. Объяснить клиенту порядок правильной работы и использования системы автоматики.
 - 3. Указать на потенциально опасные места привода.

5. РУЧНОЙ РЕЖИМ РАБОТЫ

Если вследствие пропадания напряжения или неполадок в работе привода требуется перейти на ручной режим работы, то необходимо:

- 1) Отключить электропитание при помощи сетевого выключателя (независимо от того есть ли напряжение в сети или нет).
- 2) Сдвинуть защитную крышку, рис.21/1.
- 3) Вставить ключ разблокировки и повернуть его на 90°, рис.21/2.
- 4) Чтобы разблокировать привод, нужно повернуть рукоятку устройства разблокировки на 180° по направлению стрелки, рис.21/3.
- 5) Открыть или закрыть створки ворот вручную.

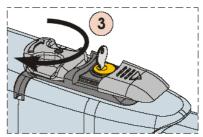


Рис. 21

Примечание: Чтобы привод работал в ручном режиме, устройство разблокировки обязательно должно оставаться в текущем положении, а электропитание должно быть отключено.

5.1. Восстановление нормального режима работы

Для восстановления нормального режима работы, необходимо:

- 1) Повернуть рукоятку устройства разблокировки на 180° в направлении, противоположном стрелке (рис.21/3).
- 2) Повернуть на 90° ключ разблокировки и вытащить его.
- 3) Закрыть защитную крышку.
- 4)Включить электропитание блока управления при помощи сетевого выключателя и произвести несколько циклов для проверки работоспособности всех функций системы автоматики.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Производить регулярные проверки конструкции ворот, в особенности работу шарниров (петель).

Производить регулярный контроль системы защиты от защемления (фотоэлементов и т.д.), а также работу системы разблокировки.

Профилактические работы необходимо проводить каждые 6 месяцев.

7. PEMOHT

Для проведения ремонтных работ следует обращаться в специализированные сервисные центры фирмы **FAAC**.

8. ДОПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

Наличие дополнительных устройств см. по каталогу.

10. ОСОБЫЕ СЛУЧАИ ПРИМЕНЕНИЯ

Не рекомендуется применять изделия не по назначению.